Assimilation of Tropical Cyclone Track and Structure Based on the Ensemble Kalman Filter (EnKF)

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallelization of Ensemble Kalman Filter (EnKF) for Oil Reservoirs

This thesis describes the design and implementation of a parallel algorithm for data assimilation with ensemble Kalman filter (EnKF) for oil reservoir management. The implemented application works on large number of observations from time-lapse seismic, which lead to a large turnaround time for the analysis step, in addition to the time consuming simulations of the realizations. Provided that p...

متن کامل

Hydrologic Data Assimilation with the Ensemble Kalman Filter

Soil moisture controls the partitioning of moisture and energy fluxes at the land surface and is a key variable in weather and climate prediction. The performance of the ensemble Kalman filter (EnKF) for soil moisture estimation is assessed by assimilating L-band (1.4 GHz) microwave radiobrightness observations into a land surface model. An optimal smoother (a dynamic variational method) is use...

متن کامل

Reservoir Multiscale Data Assimilation Using the Ensemble Kalman Filter

In this paper we propose a way to integrate data at different spatial scales using the ensemble Kalman filter (EnKF), such that the finest scale data is sequentially estimated, subject to the available data at the coarse scale (s), as an additional constraint. Relationship between various scales has been modeled via upscaling techniques. The proposed coarse-scale EnKF algorithm is recursive and...

متن کامل

An Ensemble Kalman Filter and Smoother for Satellite Data Assimilation

This paper proposes a methodology for combining satellite images with advection-diffusion models for interpolation and prediction of environmental processes. We propose a dynamic state-space model and an ensemble Kalman filter and smoothing algorithm for on-line and retrospective state estimation. Our approach addresses the high dimensionality, measurement bias, and nonlinearities inherent in s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Atmospheric Sciences

سال: 2010

ISSN: 1520-0469,0022-4928

DOI: 10.1175/2010jas3444.1